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Abstract

The observed sovereign default spells are lengthy on average, with large variability

in duration, both across countries and over time. Moreover, in the data, the distribution

of the durations of default is highly skewed and looks exponential. We show that a

model of dynamic contracting with private information, calibrated to the international

data on sovereign default, can quantitatively account for these observations. Our model

also suggests that the larger output variability that international lending supports may

explain the observation that the average duration of default is more than two times

longer in the thirty years after than before 1980.
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1 Introduction

The hallmark of the market for sovereign debt is that defaults occur periodically with individ-

ual sovereign countries. Reinhart and Rogoff (2011) call this the “serial default”, a widespread

phenomenon especially across emerging markets. These defaults may occur five or fifty years

apart; they may be wholesale default or a partial default through rescheduling.1 During any

default, the defaulting country is either completely excluded from the world credit market, or

it must face extremely high interest rates for new loans. Moreover, the observed default spells

are lengthy on average, with large variability in duration, both across countries and over time.

From Reinhart and Rogoff (2011), among the 52 countries in their dataset that experienced at

least one default episode over the period 1800-2010, the average number of years the sovereign

county is in default per default episode ranges from 1 to 41 years, with an average of 9.6 years.

More interestingly, as Uribe and Schmitt-Grohé (2017) find, the distribution of the length

of default is highly skewed and looks exponential. This is shown in Figure 1, which presents

the observed distribution of default durations from the same dataset of Reinhart and Rogoff

(2011). Uribe and Schmitt-Grohé (2017) also discover is that the average duration of default

varies between differential sample periods. They find, for example, average default duration

in the period 1975–2014 is shorter than that in 1824–2014. Our own calculation shows that

over the more recent time after WWII, default durations are on average more than two times

longer in the 30 years after 1980 than before.

Mainstream theories of sovereign default model international lending in incomplete mar-

kets.2 Lending is carried out in standard debt contracts that specify a constant repayment,

and the sovereign country is not able to commit to its debt obligations. If the current state

of the world is such that the net gains from defaulting dominates that of not defaulting, the

country will choose to default. In these models, it is typically assumed that once default

occurs, the sovereign country will face in each period a constant probability to re-enter the

world credit market.

These models generate quantitative outcomes that resemble observed default cycles, while,

because of the constant probability of regaining access to international credit, automatically

1Tomz and Wright (2013), who document the occurrence of sovereign debt default in history, find “The
most frequent defaulters were Ecuador, Mexico, Uruguay, and Venezuela; each experienced at least 8 distinct
spells of default, exemplifying a phenomenon Reinhart and Rogoff (2004) call “serial default.” Ecuador and
Honduras have each spent more than 120 years in default, beginning with their initial loans as members of
the Central American Confederation in the 1820s, and Greece has been in default for more than 90 years of
our sample.”

2This includes Eaton and Gersovitz (1981); Arellano (2008); Mendoza and Yue (2012).

1



producing an exponential distribution of default durations. What’s not adequate with these

models, however, is that they usually do not give an account for the economic mechanism

behind the constant probability of regaining access to international financial markets. In

these model, it’s not clear what ends the default or what determines the duration of the

default once it starts. They, therefore, could not be viewed as a theory for the observed

exponential distribution of default durations; neither should they be expected to provide an

account for why the durations were longer in thirty years after than prior 1980.

In this paper, we use a model of dynamic contracting – a variation of Luo and Wang

(2015) – to quantitatively account for the data on default durations, as well as a set of other

characteristics that define observed sovereign lending relationships. In any period, if the

sovereign country’s investment is funded internally, it produces a low but constant autarkic

output; externally, its output is stochastic but higher on average. Output is privately observed.

An optimal contract is designed to determine whether lending should occur in a given period,

and to provide incentives for the sovereign country to repay its debt. In this environment,

default is interpreted as a state of the dynamic contract where the sovereign country ceases,

completely or partially, to repay the credit of the international lender; the lender suspends

the borrower’s access to international lending; and the parties enter a new continuation of the

contract where the values of both the borrower and the lender are significantly marked down.

In the model, default (i.e., suspension in lending) occurs because the low output has been

reported too many times, and default allows a penalty, imposed on the sovereign country, to

be implemented. After a default episode ends, lending then reemerges with a “restructured”

contract where incentives are reorganized to support the next cycle of financial lending. The

duration of the individual default episode, which is chosen optimally as part of the contract,

depends on the size of the penalty that the lender needs to impose on the sovereign country.

It also depends on the willingness of the sovereign country to continue to repay its debt in the

state of default.

The model is constructed to capture an essential feature of the observed sovereign lending

relationship: that the lender must depend on the borrower or the sovereign nation’s willingness,

not just its ability, to repay the debt. In the model, the lender cannot impose bankruptcy

on the borrower – to seize the ownership or replace the management of his assets. What the

lender can do is to terminate the lending, either temporarily or permanently, as such an action

arises optimally from his perspective.

To replicate the observed distribution of the duration of default, an important variable is

the sovereign country’s willingness to repay its debt – modeled specifically as a minimum level
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of the sovereign country’s consumption which bounds its ability to repay debts.

Figure 1: Distribution of duration

Source: Own calculations based on the dataset of Reinhart and Rogoff (2011) which includes 70 countries,
over 1800-2010.

Note: This figure depicts the observed density of the distribution of the length of default. Defaults longer

than 40 years are not included.

1.1 The literature

As noted earlier, the literature offers ample empirical evidence showing that observed durations

of sovereign defaults are lengthy on average and with large variability (Richmond and Dias,

2009; Trebesch, 2010; Reinhart and Rogoff, 2011; Benjamin and Wright, 2013). Benjamin and

Wright (2013), for example, show that the average default takes more than 8 years to resolve,

results in creditor losses of roughly 50 percent, and leaves the sovereign country as or more

highly indebted than when they entered default. Their dataset also shows great variability in

the length of the default spell across countries and over time.
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Richmond and Dias (2009) study empirically the factors that determine the duration of

the exclusion of the defaulting nation from international capital markets between 1980–2005.

They find that partial or full market access depends mostly on external demand for risk,

good domestic behavior and market expectations. The defaulter’s size also matters, with

large economies regaining market access twice as fast as small countries. Recent theories

view the process of default resolution as a dynamic bargaining game where the duration of

the default is determined as part of the game’s outcome (Bi, 2008; Bai and Zhang, 2012;

Pitchford and Wright, 2012; Benjamin and Wright, 2013). For example, in Pitchford and

Wright (2012), since the sovereign nation cannot commit to making identical settlement offers

to all creditors, delay arises endogenously because creditors have incentives wait for better

terms of settlement at a later date. With a similar argument, Pitchford and Wright (2016)

show the distribution of delay for the entire settlement process is a weighted sum of gamma

distributions. Bai and Zhang (2012) observe that over the period 1990–2005, sovereign debt

renegotiations take an average of five years for bank loans but only one year for bonds. They

argue that information revelation in the secondary market plays a crucial role in shortening

debt renegotiations. Renegotiations of bank loans take longer to complete relative to bonds

because bank loans are rarely traded while bonds are heavily traded on the secondary market.

The rest of the paper is organized as follows. Section 2 presents the observations on the

duration of sovereign default. Section 3 describes the model. Section 4 formulates the problem

of optimal contracting and characterizes the optimal contract. Section 5 calibrates the model

to the U.S. data. Section 6 concludes the paper.

2 Sovereign Default Durations

How robust is the observation of the exponential duration distribution? Divide the data of

Reinhart and Rogoff (2011) into two sub-sample periods, prior and after WWII, with the

duration distributions for the two sub-samples shown in Figures 2 and 3, respectively. For

each sub-sample, the distribution looks exponential, as the for entire sample. The data of

Reinhart and Rogoff (2011) is divided into smaller and larger sub-samples, in many different

ways we experimented, the resulting default durations all look exponential.

Given the exponential observed distributions of default durations, we then ask: do the

moments of the distribution, mean in particular, stay constant over time across sub-samples

of the data? The answer, already given by Uribe and Schmitt-Grohé (2017), is negative.

Observe that durations are on average more than two times longer prior to 1945 than after

1945. Observe, more interestingly, that over the sixty years between 1961-2010, durations in
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the second half of the period are on average three times as long as those in the second half of

the period.

Figure 2: Distribution of duration over 1800 - 1945

Source: Own calculations based on the dataset of Reinhart and Rogoff (2011) which includes 70 countries.

Defaults longer than 40 years are not included.
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Figure 3: Distribution of duration over 1946 - 2010

Source: Own calculations based on the dataset of Reinhart and Rogoff (2011) which includes 70 countries.

Defaults longer than 40 years are not included.

Following Uribe and Schmitt-Grohé (2017), we calculate the frequency and the length of

sovereign defaults for the various sample periods selected, as presented in Table 1. Specifically,

The probability of default per year =
D

N × T
, (1)

where D is the number of default episodes within the period; N is the number of countries

who defaulted at least once during the period; T is the number of years. And

Average duration per default episode =
D∑
1

di/D, (2)

where di is the duration of default episode i.
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Table 1: Frequency and average duration of sovereign defaults

Period Probability of default per year Average duration per default episode

1800 - 1945 0.02 9.99

1946 - 2010 0.03 5.18

1951 - 1980 0.07 1.85

1981 - 2010 0.05 6.52

Source: Own calculations based on the dataset of Reinhart and Rogoff (2011) which includes 70 countries.

Our goal in this paper is to account for these observations, using a simple model which we

now present.

3 Model

Let t denote time: t = 1, 2, · · · There is a single perishable consumption good in the model.

There are two agents, a lender (international lending institution, creditor) and a borrower

(the sovereign nation, debtor), both infinitely alive. The lender is risk neutral and maximizes

expected lifetime returns from lending. The borrower is risk averse and maximizes

Eτ
∞∑
t=τ

βt−τu(ct) ,

where Eτ denotes his expectation conditional on information available at the beginning of

period τ , τ ≥ 1; β ∈ (0, 1) is the discount factor which he shares with the lender; ct and u(ct)

denote, respectively, the borrower’s consumption and utility in period t. Assume the utility

function u is bounded, strictly increasing, strictly concave, twice differentiable. In addition,

−u′′(c)/u′(c) is non-increasing in c.

The borrower owns a project that can run in one of two states: in the state of no lending –

the autarkic state – in which the borrower fails to obtain external finance, it produces, using

domestically available capital in a fixed amount which is normalized to zero, a known and

constant return θ0; and in the state of lending, where a fixed amount of capital K, which

the project requires and the lender provides, is invested in the project, it returns a stochastic

output θ ∈ {θ1, θ2}, with πi ∈ (0, 1) being the probability with which θ = θi = θ̃iθ0, i = 1, 2,

and π1 +π2 = 1. Assume 0 ≤ θ0 < θ1−K < θ2−K. That is, lending makes the project more

productive, in both the low and high output states.
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As in Luo and Wang (2015), the availability of international lending puts the sovereign

country on a superior technological track. With the use of foreign capital, not only is the

sovereign country able to produce more efficiently, with higher mean in output, but also the

output produced entails greater volatility and informational complexity.

Capital, internally provided or externally financed, is perishable. Any period the project

must operate in its autarkic state if the required external capital is not available. In any state

of lending, however, the realization of the stochastic output of the project is observed by the

borrower who runs the project, but not the lender who provides the capital.

In this environment, the lender and the borrower develop a contract to support lending,

subject to three constraints:

First, the lender is committed to the terms of any contract he wishes to enter, but the

borrower is free to quit the contract at the beginning or end of each period if continuing the

contract no longer offers a value greater his value of autarky – the value he gets if he produces

the autarkic output θ0 for the rest of his life.3

Second, the lender has limited ability in controlling the borrower’s assets. Although the

lender is free to make decisions in each period about whether or not to provide finance for

the borrower, he is not able in any period to take control over the borrower’s project. More

specifically, the lender could not either seize the debtor’s assets (the project), or to impose on

him to hand over the control of the project to any third party.

Third, consumption in the sovereign country must satisfy ct ≥ c for all t, where c ∈ (0, θ0)

is a constant. That is, consumption must be above a given minimum level for the sovereign

country. The idea is that this minimum level in consumption defines an aspect of the sovereign

country’s willingness to repay its debt, especially in the state of default. In particular, it

imposes that the debt repayment in any period of default cannot exceed θ0 − c.

It has been emphasized in the literature that the sovereign country’s willingness to repay

the deft is important for resolving the default.This will turn out to be the case in our model.

In the quantitative version of the model, this will be important for generating the distribution

of default durations that matches data.
3The notion of limited commitment can be more generally modeled. We may assume, for example, that

the borrower could not promise to stay in the relationship if he is promised a value below some given Vo which
denotes his outside option, with Vo ≥ Vmin. When Vo > Vmin, the story would be that the borrower is free
to take, in each period, an outside offer from a third party lender who promises Vo. We could also allow the
borrower to leave the contract in the middle, not just the beginning and end, of any period after the random
output is realized in that period. This would slightly complicate the analysis but not change qualitatively the
main predictions of the model.
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4 Optimal Contracting

For any period, the contract must prescribe whether lending should occur in that period. We

allow the contract to randomize between lending and suspension. Following the literature,

we use the borrower’s beginning-of-period expected utility, denoted V , as a state variable

to summarize his current history with the lender. A dynamic lending contract, formulated

recursively, then takes the form of

σ ≡ {I(V ),m0(V ), V0(V ),m1(V ), V1(V ),m2(V ), V2(V ) : V ∈ Σ},

where Σ is the state space – the set of all expected utilities of the borrower, the V s, that a

feasible contract in this environment can achieve. This set is an endogenous variable of the

model. Then for all V ∈ Σ, I(V ) is the probability of suspension – the probability with which

lending is in suspension in the current period; and 1 − I(V ) is the probability of lending –

the probability with which lending takes place in the current period. Again for all V ∈ Σ,

mi(V ) (i = 0, 1, 2) is the borrower’s payment to the lender if his current output is θi (or

θi − mi(V ) is his current consumption); and Vi(V ) is the borrower’s expected utility at the

beginning of the next period if his current output is θi, i = 0, 1, 2.

Let Vmin ≡ u(θ0)/(1− β) and Vmax ≡ u(+∞)/(1− β) denote, respectively, the borrower’s

expected utility in autarky and the sup of the expected utility he could achieve. Obviously,

Σ ⊆ [Vmin, Vmax). Next, for each V ∈ Σ, let U(V ) denote the lender’s maximum value

attainable through a feasible and incentive compatible contract. Then the value function U(·)
must be the solution to the following Bellman equation, called problem P: ∀V ∈ Σ,

U(V ) = max
I,{mi,Vi}i=0,1,2

I(m0 + βU(V0)) + (1− I)

(
2∑
i=1

πi(mi + βU(Vi))−K

)

subject to

I(u(θ0 −m0) + βV0) + (1− I)

(
2∑
i=1

πi(u(θi −mi) + βVi)

)
= V, (3)

u(θ2 −m2) + βV2 ≥ u(θ2 −m1) + βV1, (4)

u(θ1 −m1) + βV1 ≥ u(θ1 −m2) + βV2, (5)

mi ≤ θi − c, i = 0, 1, 2, (6)

Vi ∈ Σ, i = 0, 1, 2, (7)

Σ ⊆ [Vmin, Vmax), (8)
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I ∈ [0, 1], (9)

and that Σ is the largest self-generating set with respect to (3)-(9).

In the above, equation (3) is the promise-keeping constraint which requires that the values

of the current choices be consistent with the definition of V . Equations (4) and (5) are incentive

compatibility – the borrower has incentives to truthfully report his current output. Equation

(6) is a limited liability constraint which requires that the repayment from the borrower not

exceed the difference between the current output and his minimum consumption c. Equation

(7) requires that the expected utility promised to the borrower be feasible for the contract

to deliver. Equation (8) is a self-enforcing constraint which requires that the expected utility

promised to the borrower be greater than his autarkic value. Last, Σ being the largest self-

generating set with respect to (3)-(9) requires that the space of the state variable V be the

largest consistent with the above constraints.

As in Luo and Wang (2015), Σ = [Vmin, Vmax). In other words, the least expected utility a

feasible and incentive compatible contract can deliver for the borrower is his autarkic value,

and any higher level of expected utility the physical environment permits is attainable with a

feasible and incentive compatible contract.

The above optimization problem can be divided, as we show in Appendix A, into three

semi-independent sub-problems. The first sub-problem decides, for each V , whether lending

should occur in the current period. The second decides, conditional on suspension (i.e., lending

does not occur in the current period), what actions and payoffs are optimal in the current

period. Finally, the third sub-problem solves for the optimal actions and payoffs for the parties

conditional on lending occurring in the current period. Specifically, problem P can be restated

as

PI : ∀V ∈ Σ : U(V ) = max
{I,Vs,Vl}

IUs(Vs) + (1− I)Ul(Vl)

subject to (9) and

IVs + (1− I)Vl = V,

Vs ∈ [Vmin, Vmax), Vl ∈ [Ṽ , Vmax),

where Us(·), which defines the lender’s values conditional on suspension, is given by

PS : ∀Vs ∈ Σ : Us(Vs) = max
{m0,V0}

m0 + βU(V0)

subject to

u(θ0 −m0) + βV0 = Vs, (10)
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m0 ≤ θ0 − c, (11)

V0 ∈ [Vmin, Vmax), (12)

and Ul(·), which defines the lender’s values conditional on lending, is given by

PL : ∀Vl ∈ [Ṽ , Vmax) : Ul(Vl) = max
{mi,Vi}i=1,2

2∑
i=1

πi (mi + βU(Vi))−K

subject to (4), (5) and
2∑
i=1

πi (u(θi −mi) + βVi) = Vl,

mi ≤ θi − c, i = 1, 2, (13)

Vi ∈ [Vmin, Vmax), i = 1, 2,

Ṽ ≡
2∑
i=1

πiu(θi − θ1 + c) + βVmin,

where Ṽ being the minimum level of expected utility of the borrower that is feasible for the

contract to attain, conditional on lending.

To see why Ṽ is the minimum attainable expected utility that supports lending, notice

that conditional on lending, given output is privately observed, it is feasible for the borrower

to report θ1 in both of the output states and obtain an expected utility of

2∑
i=1

πiu(θi −m1) + βV1 ≥
2∑
i=1

πiu(θi − θ1 + c) + βVmin = Ṽ .

So any expected utility that the contract promises to the borrower must be at least Ṽ . More-

over, it can be shown, by way of construction, that any V ∈ [Ṽ , Vmax) can be attained with

a feasible and incentive compatible contract. In other words, the domain for problem PL is

indeed [Ṽ , Vmax). Notice that Ṽ is strictly increasing in c.

Let V̂ = u(c) + βṼ . Following Luo and Wang (2015), we have

Theorem 1. (i) Suppose

0 ≤ Vmin ≡
u(θ0)

1− β
<
β[π1u(c) + π2u(θ2 − θ1 + c)]

1− β2
.
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Then the optimal contract has

I(V ) =


1 if V ∈ [Vmin, V̂ ]

(Ṽ − V )/(Ṽ − V̂ ) if V ∈ (V̂ , Ṽ )

0 if V ∈ [Ṽ , Vmax)

; (14)

(ii) Suppose

β[π1u(c) + π2u(θ2 − θ1 + c)]

1− β2
≤ Vmin <

π1u(c) + π2u(θ2 − θ1 + c)

1− β
. (15)

Then the optimal contract has

I(V ) =


1 if V = Vmin

(Ṽ − V )/(Ṽ − Vmin) if V ∈ (Vmin, Ṽ )

0 if V ∈ [Ṽ , Vmax)

,

(iii) Suppose

Vmin ≥
π1u(c) + π2u(θ2 − θ1 + c)

1− β
. (16)

Then the optimal contract has I(V ) = 0, ∀V ∈ [Vmin, Vmax).

(iv) Over the states of suspension, the optimal contract has

V0(Vs) =
Vs − u(c)

β
> Vs, m0(Vs) = θ0 − c, (17)

and over the states of lending,

V1(Vl) < Vl < V2(Vl), m1(Vl) < m2(Vl). (18)

The main difference between this model and that of Luo and Wang (2015) is constraints

(11) and (13), which impose a lower bound on the borrower’s consumption in each output

state. In the appendix, we show that whether or not these constraints bind, they do not

affect the characterizations of the optimal contract. Specifically, conditional on suspension,

suppose (11) binds. Then for any Vs ∈ [Vmin, Vmax) we have V0(Vs) = [Vs − u(c)]/β > Vs.

Similarly, conditional on lending, suppose (13) binds. Then for any Vl ∈ [Ṽ , Vmax), V2(Vl) =

(Vl + π1u(θ2 − θ1 + c)− (1 + π1)u(c))/β > Vl.

Remember Ṽ is the minimum level of the borrower’s expected utility above which lending

12



can be supported and below which not. Equation (14) thus indicates that if lending can be

supported in the current period, it never pays to wait until a future period to start/restart

it. Equation (14) also says that for V sufficiently small, below V̂ specifically, it is optimal to

suspend lending in the current period. For V that is neither sufficiently small, V > Ṽ , nor

sufficiently large, V < Ṽ , it is optimal to mix between suspension at V̂ and lending at Ṽ .

U

V

U(V ), Ul(V )
Us(V )

Vmin V̂ Ṽ V ∗

Suspension
Mixing

Lending

Figure 4: The lender’s value functions, U(·), Ul(·), Us(·).

Over any episode of default, the optimal contract would move the borrower up in expected

utility (i.e., , V0(V ) > V ) while at the same time requiring him to submit to the lender the

current output after subtracting his minimum consumption (i.e., m0(V ) = θ0−c). Conditional

on lending, the borrower’s current debt repayment and his expected utility from next period

on are increasing in the current output he produces and reports.

Figure 4 illustrates the lender’s value functions and the associated optimal lending/suspension

policies. Observe that U(·) has a constant and positive slope over the interval [Vmin, Ṽ ) on

which a positive probability of suspension is prescribed. Figure 5 illustrates the optimal law

of motion of the borrower’s expected utility V , that equations (17) and (18) describes.

Obviously, it is the lower output produced in the states of suspension relative to that in

the states of lending that gives rise to the positive slope in the lender’s value function over

the interval [Vmin, Ṽ ). Conditional on suspension or partial suspension (i.e., over the interval

[Vmin, Ṽ )), a lower V moves the relationship farther away from lending, reducing the lender’s
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V

V

V1(V )

V2(V )

V0(V )

Vmin V̂ Ṽ

450

Figure 5: Law of motion for the borrower’s expected utility.

value. Conditional on lending (i.e., for V ≥ Ṽ ), a lower V moves the relationship closer to

suspension, exerting again a negative effect on the lender’s value. These effects then work,

simultaneously but in an opposite direction, with the usual effect that higher levels of V reduce

the lender’s value by requiring more compensation to the borrower, to give rise to the shape

of the value function shown in Figure 4.4

Theorem 1 suggests that how much suspension – interpreted as a state of default – that the

optimal contract prescribes depends on how high the sovereign country’s autarkic output is, or

how strong the demand is for lending. Specifically, for θ0 or Vmin sufficiently low, the optimal

contract prescribes, on the equilibrium path and depending on the borrower’s expected utility,

both deterministic and randomized suspension. For θ0 larger, the optimal contract prescribes

only randomized suspension. Last, for θ0 sufficiently large, so large that Vmin ≥ Ṽ ,5 then all

V greater than Vmin can support lending, and the optimal contract prescribes no suspension

at all.

A larger θ0 increases Vmin, the minimum borrower’s expected utility the contract could

enforce in a state of suspension (and in all states of the optimal contract). In other words, the

larger autarkic value reduces the maximum penalty the lender can impose on the borrower,

4Standard models of dynamic contracting with private information and a binding limited liability (or non-
negativity in compensation) constraint could also generate a positive slope of the principal’s value. That effect
is not in this model.

5The holds if and only if Vmin ≥ [π1u(c) + π2u(θ2 − θ1 + c)]/(1− β).
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by way of putting the lending on suspension. This lowers the efficiency of suspension as an

incentive device. The increased Vmin in turns increases Ṽ . The more severe penalties not being

feasible, lending now requires higher expected utilities for the borrower (the lower expected

utilities which initially support lending are no longer consistent with promise-keeping). Thus

a larger θ0 shifts the interval [Vmin, Ṽ ) – the set of expected utilities associated with suspension

– to the right. More importantly, the measure of [Vmin, Ṽ ) decreases from being positive to

negative, as Vmin increases from 0 to be above Ṽ , moving the optimal contract in the direction

of less suspension, as Propositions 1 suggests.

There is another channel through which θ0 affects incentives and suspension. Notice that

θ0 not only determines the borrower’s outside value, it is also the maximum (and in fact the

optimal) debt repayment in the states of suspension. A higher θ0 makes suspension less costly

and should therefore encourage the lender to use suspension more for incentives. Obviously,

however, this effect is dominated by the effect discussed above at least for θ0 sufficiently large.6

From the same propositions, there is also an indication that the optimal use of suspension

increases as the lender’s demand for incentives conditional on lending, which should increase

in θ2− θ1, increases. Note that a larger θ2− θ1 increases the debtor’s gains from misreporting

θ2 as θ1, making the incentive problem more severe. Notice that a larger θ2 − θ1 pushes up

the two cutoffs in the propositions, expanding the support for suspension and squeezing the

space for lending.

Consider next the effects of a higher c – a lower willingness to repay – on default and its

duration. Notice first that a higher c implies a higher Ṽ . This expands the set [Vmin, Ṽ ) – the

states with which default occurs with a positive probability. Notice next from equation (17)

that the sovereign country starts a episode of default from V = Vmin, then a larger c implies a

longer duration of default – the distance the sovereign country must travel, Ṽ −Vmin is longer,

and each step it takes to end the default, measured by

V0(V )− V =
(1− β)V − u(c)

β
,

is small. (Notice also that a larger β implies a smaller step up each period.)

6One way to separate the two effects is to consider an extension of the model where θ0 is still the borrower’s
autarkic output, but his outside value is independently given, denoted Vo for example. Then an increase in
θ0 would increase suspension but a higher Vo should reduce suspension. In an earlier version of the paper, we
show in a numerical example that a larger θ0 induces the optimal contract to push the borrower faster from
a given state of lending into suspension, while a lower θ0 gives the contract stronger incentives to stay above
Ṽ – away from suspension.
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5 Quantitative Analysis

In this section, we take the model to the data, letting i denote an individual country in a

collection of countries in the dataset. We first calibrate/estimate the model to obtain values

of the model’s parameters. we then use these parameter values to simulate the model and it

show that it can produce observed country distributions of default durations.

5.1 Data

The data on default we use in the estimation is taken from Reinhart and Rogoff (2011), which

contains information on episodes of external default in a collection of 70 countries over the

period 1800-2010. The data on the real GDP per capita is from the Maddison Project (Bolt

and van Zanden, 2014). We choose to focus on the more recent post-World War II period

1951-2010, which is then divided into two sub-periods, which are 1951-1980 and 1980-2010.

We normalize the average real GDP per capita over 1951-1980 to be 1.

For each sub-period, we first exclude default events that start before the sub-period begins

or end after the sub-period ends. Next, to estimate θ0i, θ̃1 and θ̃2, we exclude the countries

that never defaulted during the sub-period, or had only one non-default episode. Last, to

make sense for the cross-country comparison and the computation of the counter-facturals,

we only consider the countries that are not excluded in both sub-periods, which gives us a

total of 12 countries, as shown in Table 2.

5.2 Calibration

To calibrate the model, we assume the sovereign country has an CRRA utility function:

u(c) =
c1−σ

1− σ
, ∀c ≥ 0,

where we set σ = 2 as is common in business cycle models. The discount factor β is set to be

0.96 given that the model will be calibrated to annual data. We assume that the the country’s

minimum consumption is a fraction of the autarkic output, ci = λθ0i, and we set λ = 0.99 as

a benchmark.

To calibrate the production technology, we assume the countries differ in their autarkic

GDP, θi0, but not in how international capital improves on the autarkic output. Specificaly,

assume, for each individual country i, its output in any non-default period is given by:

θi = θ̃θ0i, (19)
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where

θ̃ =

θ̃1, with probability π

θ̃2, with probability 1− π
,

where θ̃1 and θ̃2 are constants, with 0 < θ̃1 < θ̃2. That is, international lending affects the

sovereign country’s output multiplicatively, and through a random variable θ̃ which is i.i.d

across time and countries.

The above structure, by way of putting a restriction on how the model looks at the cross-

country gains from international lending, greatly reduces the dimensionality of the calibra-

tion/estimation of the production functions, from potentially 4N to N+3, N being the number

of countries in the sample. Note, again, that the random variable θ̃ measures the gains in

productivity that international lending brings about. These gains are stochastic but constant

across individual countries.

5.2.1 Estimating π, θ0i, θ̃1 and θ̃2

For each individual country i, the estimate of its autarkic output θ0i is given by the average

GDP of the country over the default periods, denoted θ̂0i. The remaining parameters of the

model, π, θ̃1 and θ̃2, are then estimated, in the following, using a specific version of GMM.

The theoretical mean of the non-default GDP of country i is

(πθ̃1 + (1− π)θ̃2)θ0i,

and the theoretical standard deviation of the non-default GDP of country i is√
π(1− π)(θ̃2 − θ̃1)θ0i.

Let ξ = (π, θ̃1, θ̃2). Let m(ξ) = (m1(ξ) m2(ξ) · · · mN(ξ))T , where for each i,

mi(ξ) =

 Ê(θ̃i)− (πθ̃1 + (1− π)θ̃2)

ŜD(θ̃i)−
√
π(1− π)(θ̃2 − θ̃1)

 ,

where Ê(θ̃i) and ŜD(θ̃i) are, respectively, the sample mean and sample standard deviation of

country i’s non-default GDP over it autarkic output, or θi/θ0i. Specifically,

Ê(θ̃i) =
1

Ti

Ti∑
t=1

θi,t

θ̂0i
,
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and

ŜD(θ̃i) =

[
1

Ti

Ti∑
t=1

(
θi,t

θ̂0i
− Ê(θ̃i)

)2
]1/2

,

where for each i, θi,t is country i’s non-default GDP in the sample. And we estimate ξ =

(π, θ̃1, θ̃2) by choosing the values of π, θ̃1 and θ̃2) to minimize the value of m(ξ)′m(ξ).7

For making the desired comparison, we estimate the parameters using data from two

separate sample periods, 1981-2010 and 1951-1980, respectively,

The estimated values of θ0i are shown in Table 2. Observe the great cross country variability

in average output in the states of default (the estimated θ0i), both before and after 1980.

Observe also that among the countries in our dataset, most of the countries showed substantial

development in their own ability to produce, while others going in the opposite direction.8

7More generally, we could minimize m(ξ)′W−1m(ξ), where W−1, the weighting matrix, chosen optimally,
should be the inverse of the variance-covariance matrix of the simulated moments. Here, for convenience we
use the identity matrix instead, which is not optimal but does make the estimate consistent.

8This includes, most notably, Zimbabwe, Ghana, Peru, and Chile.
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Table 2: The estimated autarkic output θ0i

Country
1951-1980 1981-2010

θ0i Normalized value θ0i Normalized value

Zimbabwe 1196.80 0.41 928.10 0.32

Ghana 1387.75 0.48 1007.00 0.35

Sri Lanka 1766.00 0.61 1980.00 0.68

Paraguay 1799.50 0.62 3144.89 1.08

Indonesia 1050.60 0.36 3226.50 1.11

Peru 4064.75 1.40 3486.29 1.20

Costa Rica 2785.00 0.96 4518.33 1.55

Brazil 2454.50 0.84 5004.54 1.72

Turkey 3286.00 1.13 5108.50 1.75

Chile 4712.67 1.62 5502.75 1.89

Uruguay 4860.00 1.67 6209.71 2.13

Argentina 5600.73 1.92 7326.00 2.51

Note: The unit in the table is the 1990 Geary Khamis dollar, based on PPP.
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(a) The distribution in 1951-1980

(b) The distribution in 1981-2010

Figure 6: Country productivities that international lending supports
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Figure 6 depicts, for the two sample periods we have chosen to look at respectively, the

total “sample” of θ̃, where each sample point is a value of θ̃i = θi/θ̂0i, where θ̂0i is the estimate

of θ0i just obtained. Note, of course, that these values are calculated across all countries but

only for the non-default periods. These samples will be used in the following for estimating

the values of π, θ̃1 and θ̃2.

Notice the shift to the right in the sample distribution after 1980, which indicates that,

overall, international lending has been more effective in increasing the sovereign country’s

productivity over its autarky.

Table 3: Estimated θ̃1 and θ̃2

1951-1980 1981-2010

π 0.9 0.6

θ̃1 1.1 1.1

θ̃2 1.6 1.6

E(θ̃) 1.15 1.3

VAR(θ̃) 0.02 0.06

The estimated values of π, θ̃1 and θ̃2 are then repotrted in Table 3 which shows, from

the perspective of our simple model, significant differences in the productivity gains that

international lending helps achieve between the two sample periods we look at. Notice that

the differences result mainly from the lowered probability of the low output, π. Between

1951-1980 and 1981-2010, relative to the country’s autarkic technology, international lending

brings both higher mean and higher variance in GDP.9

5.3 Simulation

In this section, we simulate the model using the parameter values obtained in the prior section.

For each sub-period and with the estimated parameter values for the sub-period, we first run

the model for each individual country to compute the optimal contract. We then use the

optimal contract to produce dynamics on lending and default over a period of 150 years. We

then select the default episodes between the periods 101−130 for calculating model generated

average default duration for the individual country.10 Note that in doing this we follow the

9This is consistent with existing empirical findings.
10In this way, each country starts randomly at period 101.
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rules used for identifying an individual episode in the data. Specifically, we excludes default

episodes that start before 101 or ends after 130. We then aggregate across all individual

countries to compute the model frequency and mean duration of defaults, following equations

(1) and (2). Last, we repeat the above procedure 100 times to obtain a simulated model

stationary distribution for the duration of default, which is then compared to the data.

Figure 7 depicts the sample and simulated distributions of the duration of default for the

period 1951-1980, and Figure 8 for 1981-2010. Two observations emerge. First, like in the

data, the simulated distributions from the calibrated model look exponential – skewed to the

left and with a long tail to the right. Second, like in the data, the simulated average duration

of default is more than two time longer over the period after 1980 than before. The sample

moments is shown in Table 4.

Table 4: Frequency and average duration of sovereign defaults in 12 countries

Period
Probability of default per year Average duration per default episode

data model data model

1951 - 1980 0.072 0.174 1.96 2.12

1981 - 2010 0.058 0.057 4.62 4.78

experiment 1 0.056 4.24

experiment 2 0.164 2.59

Note: The simulated mean of frequency and average duration is the mean of those calculated in each simulation.

In experiment 1 we suppose the autarkic outputs θi0 were fixed at their 1951-1980 values and compute the

results over 1981-2010. In experiment 2 we suppose the parameters π, θ̃1 and θ̃2 were fixed at their 1951-1980

values, and compute the results over 1981-2010.
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(a) The distribution of duration in 1951-1980, data.

(b) The distribution of duration in 1951-1980, model.

Figure 7: Data versus Model, 1981-2010
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(a) The distribution of duration in 1981-2010, data.

(b) The distribution of duration in 1981-2010, model.

Figure 8: Data versus Model, 1981-2010
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What caused the significantly longer durations after than before 1980 in the calibrated

model, as in the data? The above analysis suggests two possible explanations. The first is

that the sovereign country’s autarkic output θ0i has changed to be significantly higher after

1980 (see Table 1). This could have affected the duration, but may not be in the right

direction. (i) A larger θ0 implies a larger θ0(θ̃2 − θ̃1), requiring stronger incentives for truth-

telling, implying deeper punishment for reporting low output, and longer durations. (ii) A

larger θ0 on the other hand also allows the country to get out of a given punishment sooner

– it is able to repay the lender more during default.

The second potential explanation is that the technologies that international lending sup-

ports have become more efficient, reflected in the increased (average) values of θ̃i. The lower

probability that the newer technology entails for the low output induced the optimal contract

to impose on the sovereign country, upon a realization of low output, larger punishments

which, in turn, put the sovereign country deeper in debt once a default occurs, resulting in

longer durations of default.

To identify quantitatively the effects that have caused the longer durations, we do the

following counter-factual experiments. In the first experiment, we suppose the countries’

autarkic output θ0i were fixed at their 1951-1980 values over the period 1981-2010. Figure 9a

depicts the computed distribution of durations over 1981-2010. In the second experiment, we

compute the distribution of default durations over 1980-2010 supposing that the parameters π,

θ̃1 and θ̃2 were fixed at their 1951-1980 values. The outcomes are given in Figure 9b and Table

4. Clearly, it is the changes in π, θ̃1 and θ̃2 that have resulted the longer average duration

after 1980.
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(a) The distribution of duration in 1981-2010, counter-factual 1.

(b) The distribution of duration in 1981-2010, counter-factual 2.

Figure 9: Two counter-factual examples for period 1981-2010
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6 Conclusion

A remarkably simple model of dynamic contracting with private information and limited com-

mitment has been constructed to study sovereign lending and default. The optimal contract

generates long-run dynamics where cycles of lending and suspension alternate, resembling the

observed serial default on sovereign debt. The model is calibrated to international data to

account for serval stylized facts on sovereign default, including (i) observed default spells are

lengthy on average, with large variability in duration, both across countries and over time;

(ii) the observed distribution of default durations is highly skewed and looks exponential; and

(iii) the average duration of default is more than two times longer in the thirty years after

1980 than before.
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A Appendix

A.1 The Concavity of the Value Functions

See the appendix in Luo and Wang (2015) for proving that the value functions U(·), Us(·), Ul(·)
are concave and their domains are [Vmin, Vmax), [Vmin, Vmax) and [Ṽ , Vmax) respectively. In

addition, conditional on lending with promised utility Vl, the incentive constraint (4) binds

at the optimum but (5) does not, and it holds at the equilibrium that m2(Vl) ≥ m1(Vl),

V2(Vl) ≥ V1(Vl).

A.2 Lemma 1 and proof

As in in Luo and Wang (2015), we first show that over an interval of sufficiently low V s, the

value functions U(·) and Us(·) are upward-sloping.

Lemma 1. Suppose Vmin < Ṽ . With the optimal contract, (i) there exists V u ∈ (Vmin, Ṽ ) such

that U(·) is upward-sloping on the interval [Vmin, V
u]; and (ii) there exists V u

s , with V
u
s > Vmin,

such that Us(·) is upward-sloping on the interval [Vmin, V
u
s ].

Proof. (i) Suppose, with the optimal contract, U ′(Vmin) ≤ 0. But U(·) is concave, so

U(Vmin) ≥ U(V ), ∀V ∈ [Vmin, Vmax). (20)

Because Vmin is the minimum expected utility feasible for the borrower, and Vmin < Ṽ , it must

hold that I(Vmin) = 1. So

U(Vmin) = Us(Vmin) = m0(Vmin) + βU(V0(Vmin)).

Now consider a tuple {I(V ),mi(V ), Vi(V )}i=0,1,2 given by

I(V ) = 0,m0(V ) = θ0 − c, V0(V ) = Vmin,m1(V ) = m2(V ) = θ1 − c,

V1(V ) = V2(V ) = Vmin.

It is feasible at V = Ṽ and gives the lender a value of

θ1 − c+ βU(Vmin) > θ0 − c+ βU(Vmin)

≥ m0(Vmin) + βU(V0(Vmin))

= U(Vmin),
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which implies U(Ṽ ) > U(Vmin), a contradiction to (20). Thus it must hold that U ′(Vmin) > 0,

and given that U(·) is concave, there exists some V u ∈ (Vmin, Ṽ ) such that U ′(V ) > 0 for all

V ∈ [Vmin, V
u].

(ii) From the above proof, U(·) is upward-sloping on the interval [Vmin, V
u], so

U(V ) > U(Vmin) = Us(Vmin), ∀V ∈ (Vmin, V
u]. (21)

Now suppose, with the optimal contract, U ′s(Vmin) ≤ 0. Then given that Us(·) is concave, it

holds that

Us(Vmin) ≥ Us(V ), ∀V ∈ [Vmin, Vmax). (22)

Then (21) and (22) imply

U(V ) > Us(V ),∀V ∈ (Vmin, V
u],

Together with V u < Ṽ , we have

I(V ) ∈ (0, 1),∀V ∈ (Vmin, V
u].

Thus U(·) is linear over the interval [Vmin, Ṽ ], and it is also upward-sloping.

Next, consider a pair {m0, V0} which is feasible to the problem PS at V = u(c) + βṼ :

m0 = θ0 − c, V0 = Ṽ .

Then

Us(V ) ≥ θ0 − c+ βU(Ṽ )

> θ0 − c+ βU(Vmin)

≥ Us(Vmin),

where the second inequality is from assumption Vmin < Ṽ and that U(·) is upward-sloping

over [Vmin, Ṽ ]. But this contradicts with (22), so U ′s(Vmin) > 0. Then given Us(·) is concave,

there exists some V u
s ∈ (Vmin, Ṽ ) such that U ′s(V ) > 0 for all V ∈ [Vmin, V

u
s ].

A.3 Lemma 2 and proof

Lemma 2. For all V > Vmin, the optimal contract involves lending in at least some periods.

Proof. Fix V ∈ (Vmin, Vmax). Suppose the optimal contract that attains V dictates suspension
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in all periods. Then

V =
u(θ0 −m0)

1− β
, and U(V ) =

m0

1− β
,

where m0 < θ0 − c is the constant repayments from the borrower in any period.

Now consider another plan in which there is no lending until period T , but then lending

occurs in all periods after T . And the lender requires the same constant repayment m0 for

all periods and all output states, except for period 0, in which he requires a repayment of m.

With this plan, the expected utility of the borrower is

V ′(m,T ) = u(θ0 −m) +
T∑
s=1

βsu(θ0 −m0) +
∞∑

τ=T+1

βτ
2∑
i=1

πiu(θi −m0).

Note that V ′(m,T ) is decreasing in m and T , with V = V ′(m0,∞). Given that θ0 < θ1 < θ2

and 0 < β < 1, there exist some finite T ∗ and m∗ ∈ (m0, θ0) such that

V ′(m∗, T ∗) = V.

Therefore we have shown that the new plan with {m∗, T ∗} makes the borrower indifferent but

gives the lender a strictly higher utility (m∗ > m0), a contradiction.

A.4 Suspension

As in in Luo and Wang (2015), we characterize the (unique) solution to problem PS in a set

of first order conditions. Specifically, let αs, µ0, βκ0 be the Lagrangian multipliers associated

with constraints (10)-(12) respectively. Then

m0 : 1− αsu′(θ0 −m0)− µ0 = 0, (23)

µ0(θ0 − c−m0) = 0, µ0 ≥ 0, (24)

V0 : βU ′(V0) + αsβ + βκ0 = 0, (25)

κ0(V0 − Vmin) = 0, κ0 ≥ 0.

The envelope theorem gives

Vs : U ′s(Vs) = −αs. (26)

From (25) and (26) we have

U ′s(Vs) = U ′(V0) + κ0.
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Lemma 3. For all Vs ∈ (Vmin, Vmax), κ0 = 0 and thus

U ′s(Vs) = U ′(V0). (27)

Proof. Suppose for some Vs > Vmin, κ0 > 0, so V0 = Vmin. Then U ′(V0) = U ′(Vmin) > 0 which,

together with (25), implies

αs = −U ′(V0)− κ0 < 0.

From (23) we have µ0 > 0. Thus from (24), m0 = θ0 − c. This contradicts with the promise-

keeping constraints (10). So for all Vs > Vmin, κ0 = 0, and equation (27) then follows

immediately.

Lemma 4. The following holds with the optimal contract: (i) Let Vs ∈ (Vmin , Vmax) and

suppose U ′s(Vs) ≥ 0. Then V0(Vs) = (Vs− u(c))/β, m0(Vs) = θ0− c. (ii) Let Vs ∈ (Vmin, Vmax)

and suppose U ′(Vs) ≥ 0. Then V0(Vs) > Vs.

Proof. (i) Let Vs ∈ (Vmin, Vmax) and let U ′s(Vs) ≥ 0. From (26), −αs = U ′s(Vs) ≥ 0. And from

(23) we have

µ0 = 1− αsu′(θ0 −m0) > 0.

Then (24) implies m0(Vs) = θ0 − c and from (10) we have

V0(Vs) =
Vs − u (θ0 −m0(Vs))

β
=
Vs − u(c)

β
.

(ii) Now suppose U ′(Vs) ≥ 0 and V0(Vs) ≤ Vs. From Lemma 3 we have

U ′s(Vs) = U ′(V0(Vs)) ≥ U ′(Vs) ≥ 0.

But if U ′s(Vs) ≥ 0, then we know from (i) that V0(Vs) = (Vs − u(c))/β > Vs. A contradiction,

and the proof is done.

A.5 Lending

As in Luo and Wang (2015), we restate problem PL as

Ul(Vl) = max
{mi,Vi}i=1,2

2∑
i=1

πi (mi + βU(Vi))
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subject to

αl :
∑2

i=1 πi (u(θi −mi) + βVi) = Vl, (28)

µi : mi ≤ θi − c, i = 1, 2, (29)

βπiκi : Vi ≥ Vmin, i = 1, 2. (30)

γ2 : u(θ2 −m2) + βV2 = u(θ2 −m1) + βV1, (31)

The solution to this problem can then be characterized in the following first order conditions:

m1 : π1 − αlπ1u′(θ1 −m1) + γ2u
′(θ2 −m1)− µ1 = 0, (32)

µ1(θ1 − c−m1) = 0, µ1 ≥ 0, (33)

m2 : π2 − αlπ2u′(θ2 −m2)− γ2u′(θ2 −m2)− µ2 = 0, (34)

µ2(θ2 − c−m2) = 0, µ2 ≥ 0, (35)

V1 : π1βU
′(V1) + αlπ1β − γ2β + βπ1κ1 = 0, (36)

κ1(V1 − Vmin) = 0, κ1 ≥ 0,

V2 : π2βU
′(V2) + αlπ2β + γ2β + βπ2κ2 = 0, (37)

κ2(V2 − Vmin) = 0, κ2 ≥ 0.

And the envelope theorem gives

∀Vl : U ′l (Vl) = −αl. (38)

Combining (36), (37) and (38) we have

U ′l (Vl) = π1U
′(V1) + π2U

′(V2) + π1κ1 + π2κ2. (39)

Lemma 5. With the optimal contract,

(i) κ1 = 0, for all Vl ∈ (Ṽ , Vmax) such that U ′l (V ) ≥ 0; and

(ii) κ2 = 0, for all Vl ∈ [Ṽ , Vmax).

Proof. The incentive constraints imply V2 ≥ V1 which, together with V1 ≥ Vmin, implies

V2 ≥ Vmin, or κ2 = 0 for all Vl ∈ [Ṽ , Vmax), and this proves (ii).

To prove (i), suppose Vl ∈ (Ṽ , Vmax) and U ′l (Vl) ≥ 0 but κ1 > 0. Then V1 = Vmin and

U ′(V1) = U ′(Vmin) > 0. From (38) we know αl = −U ′l (Vl) ≤ 0, thus from (32) we must have
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µ1 > 0 and then m1 = θ1 − c. But constraints (28) and (31) imply

2∑
i=1

πiu(θi −m1) + βV1 = Vl, (40)

or

Vl =
2∑
i=1

πiu(θi − θ1) + βVmin = Ṽ ,

contradicting with Vl > Ṽ . This proves (i).

A.6 Proof of part (i) of Theorem 1

The proof is divided into three parts, in Lemmas 6 – 8. Suppose

0 ≤ Vmin ≡
u(θ0)

1− β
<
β[π1u(c) + π2u(θ2 − θ1 + c)]

1− β2
.

Remember that

V̂ = u(c) + βṼ .

Lemma 6. The following holds with the optimal contract:

(i) U ′s(V ) = U ′(Vmin) for all V ∈ [Vmin, V̂ ); U ′s(V ) < U ′(Vmin) for all V ∈ (V̂ , Vmax).

(ii) U ′(V ) = U ′(Vmin) for all V ∈ [Vmin, Ṽ ); U ′(V ) < U ′(Vmin) for all V ∈ (Ṽ , Vmax).

(iii) I(V ) = 1 for all V ∈ [Vmin, V̂ ]; I(V ) ∈ (0, 1), for all V ∈ (V̂ , Ṽ ), and I(Ṽ ) = 0.

Proof. From Lemma 1 we have U ′(Vmin) > 0. Let

V = sup{V : U ′s(V ) = U ′(Vmin), V ∈ Σ}, (41)

V ′ = sup{V : U ′(V ) = U ′(Vmin), V ∈ Σ}. (42)

V and V ′ are finite since U(·), Us(·) are concave and

lim
V→Vmax

Us(V ) = −∞ < Us(Vmin),

lim
V→Vmax

U(V ) = −∞ < U(Vmin).

Step 1 We show V > Vmin. From the proof of Lemma 1, we have I(Vmin) = 1. Let

δ = sup{V ′ : I(V ) = 1,∀V ∈ [Vmin, V
′]}.

Then δ ≥ Vmin. We consider two cases respectively: δ =< Vmin and δ > Vmin.
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Case 1: δ = Vmin. In this case, for any φ ∈ (δ, Ṽ ), we have I(φ) ∈ (0, 1), since the domain

of Ul(·) is [Ṽ , Vmax). This implies there exists some φ1, φ2 such that

Vmin ≤ φ1 < φ < Ṽ ≤ φ2,

φ = I(φ)φ1 + (1− I(φ))φ2,

U(φ) = I(φ)Us(φ
1) + (1− I(φ))Ul(φ

2).

And U(·) is linear between φ1 and φ2, or

U(V ) = KφV + Cφ,∀V ∈ [φ1, φ2],

where Kφ and Cφ are constants.

Now since for any V , U(V ) is the unique maximum value, it’s clear that U(·) is linear on

the interval (δ, Ṽ ), or

U ′(V ) is constant over (δ, Ṽ ). (43)

From Lemmas 1 and 4 we have for all ε ∈ (Vmin, V
u
s ),

U ′s(ε) = U ′(ε/β) = U ′(Vmin).

The last equality is from (43). So V ≥ V u
s > Vmin.

Case 2: δ > Vmin. In this case, for any w < v ∈ [Vmin,min(δ, V u
s )) we have

Us(v) = U(v) = θ0 + βU(
v

β
),

Us(w) = U(w) = θ0 + βU(
w

β
).

Thus, given that U(·) is concave, we have

U ′(v) ≤ U(v)− U(w)

v − w
=
U(v/β)− U(w/β)

v/β − w/β
≤ U ′(w/β),

for any w, v in the interval [Vmin,min(δ, V u
s )) with w < v. Now consider w, v with v ∈ (w,w/β).

By the concavity of U(·), we have U ′(v) ≥ U ′(w/β). Therefore,

U ′(w) = U ′(v/β), ∀w, v ∈ [Vmin,min(δ, V u
s )) with v ∈ (w,w/β).

This then implies, immediately, that U ′(·) is constant over the whole interval [Vmin,min(δ, V u
s )).
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And it then follows that V ≥ min{δ, V u
s } > Vmin.

Given that Us(·) and U(·) are concave, given U(Vmin) = Us(Vmin) and U(V ) ≥ Us(V ) for

all V ∈ Σ, V > Vmin then implies

{V : U ′s(V ) = U ′(Vmin), V ∈ Σ} = [Vmin, V ].

Step 2 We prove V ′ = (V − u(c))/β . Given U ′s(V ) = U ′(Vmin) > 0 for all V ∈ [Vmin, V ),

we have

lim
V→V−

V0(V ) = lim
V→V−

(V − u(c))/β = (V − u(c))/β.

From Lemma 3,

lim
V→V−

U ′(V0(V )) = lim
V→V−

U ′s(V ) = U ′(Vmin),

so U ′((V − u(c))/β) = U ′(Vmin) and then V ′ ≥ (V − u(c))/β.

Suppose V ′ > (V − u(c))/β. There exists some ε > 0 such that (V + ε − u(c))/β ≤ V ′.

From the promise keeping constraint (10),

V0(V + ε) = (V + ε)/β − u (θ0 −m0(V + ε)) /β

≤ (V + ε)/β − u(c)/β

≤ V ′.

From (42), we have

U ′s(V + ε) = U ′(V0(V + ε)) = U ′(Vmin).

This contradicts with the (41). So we have V ′ = (V − u(c))/β.

Step 3 We show that V ′ = Ṽ and I(V ) ∈ (0, 1) for all V ∈ (V , V ′).

Since

U(Vmin) = Us(Vmin),

U ′(V ) = U ′(Vmin) = U ′s(V ),∀V ∈ [Vmin, V ).

So

U(V ) = Us(V ).

And for all V ∈ (V , V ′),

U ′(V ) = U ′(Vmin) > U ′s(V ).

Thus

U(V ) > Us(V ), ∀V ∈ (V , V ′], (44)
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and so

I(V ) < 1, ∀V ∈ (V , V ′].

Now if I(V ′) > 0, then there exists some V 1 < V ′ < V 2 such that

U ′(V ′) = U ′(V 1) = U ′(V 2) = U ′(Vmin).

But this contradicts with (42). Thus I(V ′) = 0 and U(V ′) = Ul(V
′), and thus V ′ ≥ Ṽ .

Suppose V ′ > Ṽ . Since Ul(·) is concave and

U ′(V ) = U ′(Vmin),∀V ∈ (Ṽ , V ′),

U(V ) ≥ Ul(V ),∀V ∈ (Ṽ , V ′),

U(V ′) = Ul(V
′),

we have

U ′l (V ) ≥ U ′(Vmin) > 0, ∀V ∈ (Ṽ , V ′).

Thus from Lemma 5 we have κ1 = κ2 = 0 for all V ∈ (Ṽ , V ′), according to (39),

U ′l (V ) = π1U
′(V1) + π2U

′(V2) ≤ U ′(Vmin).

So

U ′l (V ) = U ′(Vmin),∀V ∈ (Ṽ , V ′).

Now consider the solution to the problem PL at V ∈ (Ṽ , V ′):

U ′l (V ) = U ′(Vmin)

⇒ U ′(V1(V )) = U ′(V2(V )) = U ′l (V ) = U ′(Vmin) > 0

⇒ γ2(V ) = 0, αl(V ) < 0

⇒ µ1(V ) > 0, µ2(V ) > 0

⇒ m1(V ) = θ1 − c,m2(V ) = θ2 − c,

V2(V ) = (V + π1u(θ2 − θ1 + c)− (1 + π1)u(c))/β > V.

The second line follows from (39) and the fact that U ′(V ) ≤ U ′(Vmin),∀V ∈ [Vmin, Vmax). The

third line follows from (36) and (38). The fourth line follows from (32) and (34). The fifth

line follows from (28), (33), (35) and (40).
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Thus there exists some ε > 0 such that

V2(V
′ − ε) =

V ′ − ε+ π1u(θ2 − θ1 + c)− (1 + π1)u(c)

β
> V ′,

and

U ′(V2(V
′ − ε)) = U ′(Vmin),

but this contradicts with (42). So V ′ = Ṽ .

Step 4 From Step 3 we have V ′ = Ṽ , from Step 2 we have V = u(c) + βV ′ = u(c) + βṼ .

From Step 3 we also have

I(V ) ∈ (0, 1),∀V ∈ (u(c) + βṼ , Ṽ ), and I(Ṽ ) = 0.

These, together with (44) imply

U(Ṽ ) = Ul(Ṽ ) > Us(Ṽ ).

This completes the proof of the lemma.

Lemma 7. With the optimal contract, for all V ∈ [Ṽ , Vmax), Ul(V ) > Us(V ) and I(V ) = 0.

Proof. From Lemma 6, we have U(V ) > Us(V ), for all V ∈ (V̂ , Ṽ ). Let V ∗ attain the

maximum value for the lender, or U ′(V ∗) = 0. We show U(V ) > Us(V ) for all V ∈ [Ṽ , Vmax)

in two steps.

Step 1 For all V ∈ [Ṽ , V ∗], we have U ′(V ) ≥ 0. From Lemmas 3 and 4 we have

U ′s(V ) = U ′(V0) = U ′((V − u(c))/β) ≤ U ′(V ).

That is, as V increases, Us(V ) increases more slowly than U(V ). So U(V ) > Us(V ) for all

V ∈ [Ṽ , V ∗].

Step 2 For all V ∈ (V ∗, Vmax), we have U ′(V ) < 0. Suppose Us(V ) = m0 + βU(V0). Now

consider a plan at V at which lending occurs, and with {m1 = m2 = m0, V1 = V2 = V0}.
This plan will give the lender a value at V equal to m0 + βU(V0) = Us(V ), while giving the

borrower

V ′ =
2∑
i=1

πiu(θi −m0) + βV0 > V.

Obviously then

U(V ) > U(V ′) ≥ m0 + βU(V0) = Us(V ).

Now for all V ∈ [Ṽ , Vmax), we have U(V ) > Us(V ) which implies I(V ) < 1. Suppose there
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exists φ ∈ [Ṽ , Vmax) such that I(φ) ∈ (0, 1). Then there must exist φ1, φ2 with

Vmin ≤ φ1 < Ṽ ≤ φ < φ2

such that U(·) is linear between φ1 and φ2. This contradicts with part (ii) of Lemma 6. So

I(V ) = 0 for all V ∈ [Ṽ , Vmax). Thus Ul(V ) = U(V ) > Us(V ), for all V ∈ [Ṽ , Vmax).

Lemma 8. With the optimal contract, it holds for all V ∈ [Ṽ , Vmax) that V1(V ) < V < V2(V )

and m1(V ) < m2(V ).

Proof. We need only prove V1(V ) < V < V2(V ) which, given (31), necessarily implies m1 <

m2.

Fix V ∈ [Ṽ , Vmax). Note that we have V1 ≤ V2. From Lemma 7 we have U(V ) = Ul(V ).

These, together with (38) imply

U ′(V ) = U ′l (V ) = −αl.

From (39) and Lemma 5 we have

π1U
′(V1) + π2U

′(V2) + π1κ1 = U ′(V ).

Suppose κ1 > 0. Then V1 = Vmin and

U ′(V2) = U ′(V ) +
π1
π2

(U ′(V )− U ′(V1)− κ1) < U ′(V ).

Given U ′(V ) ≤ U ′(V1) = U ′(Vmin), we have V2 > V ≥ Ṽ > V1 = Vmin.

Suppose κ1 = 0. Then

π1U
′(V1) + π2U

′(V2) = U ′(V ) = −αl.

Given V1 ≤ V2 and that U(·) is concave, we have either

U ′(V1) > U ′(V ) > U ′(V2),

which implies V1 < V < V2; or

U ′(V1) = U ′(V ) = U ′(V2) = −αl. (45)
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Now suppose U ′(V1) = U ′(V ) = U ′(V2) = −αl. Let

V ′ = inf{ω : U ′(ω) = −αl, ω ∈ [Ṽ , Vmax)}, (46)

and

V ′′ = sup{ω : U ′(ω) = −αl, ω ∈ [Ṽ , Vmax)}. (47)

It is clear that Ṽ ≤ V ′ ≤ V ≤ V ′′. Let {m′1,m′2, V ′1 , V ′2 , µ′1, µ′2, γ′2, κ′1} be the solution to the

problem PL at V ′ and {m′′1,m′′2, V ′′1 , V ′′2 , µ′′1, µ′′2, γ′′2 , κ′′1} be the solution at V ′′. From (39) and

Lemma 5 we have

π1U
′(V ′1) + π2U

′(V ′2) + π1κ
′
1 = U ′(V ′), (48)

π1U
′(V ′′1 ) + π2U

′(V ′′2 ) + π1κ
′′
1 = U ′(V ′′).

Case 1 Suppose V1 = V = V2. From (31) we have m2 = m1 ≤ θ1 − c < θ2 − c, so µ2 = 0.

From (37) we have

γ2 = − (π2U
′(V2) + αlπ2) = 0.

This, together with (34), implies

αl =
1

u′(θ2 −m2)
.

Moreover, from (32) we have

αl =
1− µ1/π1
u′(θ1 −m1)

.

So

αl =
1

u′(θ2 −m2)
=

1− µ1/π1
u′(θ1 −m1)

≤ 1

u′(θ1 −m1)
.

This contradicts with m1 = m2. Thus it is not optimal to have V2 = V = V1.

Case 2 Suppose αl ≤ 0. From (32), γ2 ≥ 0 and u′(·) ≥ 0 we have µ1 > 0, so m1 = θ1 − c.
From (40) we have

V1 = [V − π1u(θ1 −m1)− π2u(θ2 −m2)] /β

= [V − π1u(c)− π2u(θ2 − θ1 + c)] /β

= (V − Ṽ + βVmin)/β.

Now suppose V2 ≤ V . Then U ′(V2) ≥ U ′(V ) = −αl ≥ 0. This, together with (37), implies

αl + γ2/π2 = −U ′(V2) ≤ 0.
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From (34) we have

µ2 = π2 [1− (αl + γ2/π2)u
′(θ2 −m2)] > 0,

and so m2 = θ2 − c. From (28) and 0 < β < 1, we have

V2 =
V + π1u(θ2 − θ1 + c)− (1 + π1)u(c)

β
> V,

a contradiction. So we have V2 > V .

Next, suppose V1 = (V − Ṽ + Vmin)/β ≥ V . Then

(Ṽ − Vmin)/(1− β) ≤ V.

Given

U ′(V2) = U ′(V1) = U ′(V ) = −αl,

we have V ′′ ≥ V2 > V . Consider now the solution at V ′′. Using the same argument for

proving V2 > V , we can show V ′′2 > V ′′. From (47), we have U ′(V ′′2 ) < U ′(V ′′) = −αl. Since

U ′(V ′′) = −αl ≥ 0, from Lemma 5 we have

π1U
′(V ′′1 ) + π2U

′(V ′′2 ) = U ′(V ′′) = −αl.

So U ′(V ′′1 ) > U ′(V ′′). Since U(·) is concave, we have V ′′1 = (V ′′ − Ṽ + Vmin)/β < V ′′. This

implies V ′′ < (Ṽ − Vmin)/(1− β) ≤ V , a contradiction. So it must hold V1 < V < V2.

Case 3 Suppose αl > 0. The following shows that this case is not optimal. In Case 1 we

have shown that it is not optimal to have V1 = V = V2. Given V1 ≤ V2, there are two cases

to be considered: V1 < V and V1 ≥ V, V2 > V .

Case 3.1 Suppose V1 < V . Then V ′ ≤ V1 < V . Now consider the solution at V ′. Given

V ′1 ≤ V ′2 , we have U ′(V ′1) ≥ U ′(V ′2). There are two cases to be considered: U ′(V ′1) = U ′(V ′2)

and U ′(V ′1) > U ′(V ′2), and we derive a contradiction for both cases.

Case 3.1.1 Suppose U ′(V ′1) = U ′(V ′2). If κ′1 > 0, then V ′1 = 0 and (48) implies

U ′(V ′) = U ′(V ′1) + π1κ
′
1 > U ′(0),

a contraction. So we have κ′1 = 0, and

U ′(V ′1) = U ′(V ′) = U ′(V ′2) = −αl.
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Then together with (37) we have γ2 = γ′2 = 0. So (32) implies

− αlπ1 [u′(θ1 −m1)− u′(θ1 −m′1)] = µ1 − µ′1. (49)

If µ1 = 0, µ′1 = 0, then because u(·) is strictly concave, we have m1 = m′1. If µ1 = 0, µ′1 > 0,

then m′1 = θ1 − c. The right hand side of (49) is negative, but the left hand side of (49) is

−αlπ1 [u′(θ1 −m1)− u′(c)] ≥ 0,

a contradiction. If µ1 > 0, µ′1 = 0, then m1 = θ1 − c. The right hand side of (49) is positive,

but the left hand side of (49) is

−αlπ1 [u′(c)− u′(θ1 −m′1)] ≤ 0,

a contradiction. If µ1 > 0, µ′1 > 0, then m1 = m′1 = θ1 − c. These imply m1 = m′1. So, from

(40) we have

V ′ − βV ′1 = V − βV1
⇒ V ′1 = V1 − V/β + V ′/β

= V ′ + (V ′ − V )(1/β − 1) + (V1 − V ) < V ′.

But given U ′(V ′1) = U ′(V ′) = −αl, this contradicts with the (46).

Case 3.1.2 Suppose U ′(V ′1) > U ′(V ′2). From (48) we have

U ′(V ′2) < U ′(V ′) = −αl ≤ U ′(V ′1),

which implies V ′1 ≤ V1 ≤ V2 < V ′2 . The following shows m′1 ≥ m1 and m′2 ≤ m2.

From (37), we have γ2 = 0, γ′2 > 0. So from (32), we have

π1 = αlπ1u
′(θ1 −m1) + µ1 = αlπ1u

′(θ1 −m′1) + µ′1 − γ′2u′(θ2 −m′1).

So either u′(θ1 −m′1) > u′(θ1 −m1) or µ′1 > µ1 ≥ 0. In both cases, m′1 ≥ m1 holds.

From (34), we have

π2 = αlπ2u
′(θ2 −m2) + µ2 = αlπ2u

′(θ2 −m′2) + µ′2 + γ′2u
′(θ2 −m′2).

So either u′(θ2 −m′2) < u′(θ2 −m2) or 0 ≤ µ′2 < µ2. In both cases, m′2 ≤ m2 holds.
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But, from (31) we have

V ′2 − V ′1 > V2 − V1
⇒ u(θ2 −m′1)− u(θ2 −m′2) > u(θ2 −m1)− u(θ2 −m2),

contradicting with m′1 ≥ m1,m
′
2 ≤ m2.

Case 3.2 Suppose V1 ≥ V and V2 > V . These, together with (45) and (47), give V <

V2 ≤ V ′′. Consider then the solution at V ′′. Given V ′′1 ≤ V ′′2 , we have U ′(V ′′1 ) ≥ U ′(V ′′2 ).

There are two cases to be considered: U ′(V ′′1 ) = U ′(V ′′2 ) and U ′(V ′′1 ) > U ′(V ′′2 ), and we derive

a contradiction for both cases.

Case 3.2.1 Suppose U ′(V ′′1 ) = U ′(V ′′2 ). Applying the same argument for deriving the

contradiction in Case 3.1.1 we can show

U ′(V ′′1 ) = U ′(V ′′) = U ′(V ′′2 ) = −αl,

and m1 = m′′1. Then from (40) we have

V ′′ − βV ′′1 = V − βV1
⇒ V ′′1 = V1 − V/β + V ′′/β

= V ′′ + (V ′′ − V )(1/β − 1) + (V1 − V ) > V ′′.

But given U ′(V ′′1 ) = U ′(V ′′) = −αl, this contradicts with (47).

Case 3.2.2 Suppose U ′(V ′′1 ) > U ′(V ′′2 ). Then V ′′1 ≤ V1 ≤ V2 < V ′′2 . Applying the same

argument for deriving the contradiction in Case 3.1.2 we will have a contradiction.

To summarize, in the case of U ′(V1) = U ′(V ) = U ′(V2) = −αl, we also have V1 < V < V2.

The proof of the lemma is now complete.

A.7 Proof of part (ii) of Theorem 1

Suppose
β[π1u(c) + π2u(θ2 − θ1 + c)]

1− β2
≤ Vmin <

π1u(c) + π2u(θ2 − θ1 + c)

1− β
.

We have Vmin < Ṽ . Following the proof of Lemma 1, we can show that U ′(Vmin) > 0. Then

following the steps in the proofs of Lemmas 6 – 8 we can show part (ii) of Theorem 1.
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A.8 Proof of part (iii) of Theorem 1

Suppose

Vmin ≥
π1u(c) + π2u(θ2 − θ1 + c)

1− β
.

We have Vmin ≥ Ṽ . So for all V ∈ [Vmin, Vmax), the contract is free to enforce lending or

suspension. There are three cases to consider.

Case 1: Ul(Vmin) > Us(Vmin). In this case, following the same argument as in the proof of

Lemma 7, it is straightforward to show that U(V ) = Ul(V ) > Us(V ), for all V ∈ [Vmin, Vmax).

Case 2: U ′(Vmin) ≤ 0. In this case, we show Ul(Vmin) > Us(Vmin), as in Case 1. Suppose,

conditional on suspension, the optimal contract has, at V = Vmin,

Vmin = u(θ0 −m0) + βV0, (50)

Us(Vmin) = m0 + βU(V0).

Then consider a deviation from suspension to lending, with

{m1 = m2 = m0 + δm, V1 = V2 = V0 − δv} ,

where δm ∈ [0, θ1 − c−m0], δv ∈ [0, V0 − Vmin] and δm, δv satisfy

Vmin = π1u(θ1 −m0 − δm) + π2u(θ2 −m0 − δm) + β(V0 − δv).

Such δm and δv must exist because of (50) and

Vmin ≥ Ṽ = π1u(c) + π2u(θ2 − θ1 + c) + βVmin.

Given that U ′(Vmin) ≤ 0 and U(·) is concave, we have U ′(V ) ≤ 0 for all V ∈ [Vmin, Vmax). So

the deviation thus constructed gives the lender more value than he had under suspension. We

therefore have Ul(Vmin) > Us(Vmin).

Case 3: Ul(Vmin) ≤ Us(Vmin) and U ′(Vmin) > 0. Using the same argument as in the proof

of Lemma 6, we can also derive a contradiction in this case. This completes the proof of the

theorem.
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